A Lattice Gas Automata Model for the Coupled Heat Transfer and Chemical Reaction of Gas Flow Around and Through a Porous Circular Cylinder

نویسندگان

  • Hongsheng Chen
  • Zhong Zheng
  • Zhiwei Chen
  • Xiaotao T. Bi
چکیده

Coupled heat transfer and chemical reaction of fluid flow in complex boundaries are explored by introducing two additional properties, i.e., particle type and energy state into the Lattice gas automata (LGA) Frisch–Hasslacher–Pomeau (FHP-II) model. A mix-redistribute of energy and type of particles is also applied on top of collision rules to ensure randomness while maintaining the conservation of mass, momentum and energy. Simulations of heat transfer and heterogeneous reaction of gas flow passing a circular porous cylinder in a channel are presented. The effects of porosity of cylinder, gas inlet velocity, and reaction probability on the reaction process are further analyzed with respect to the characteristics of solid morphology, product concentration, and temperature profile. Numerical results indicate that the reaction rate increases with increasing reaction probability as well as gas inlet velocity. Cylinders with a higher value of porosity and more homogeneous structure also react with gas particles faster. These results agree well with the basic theories of gas–solid reactions, indicating the present model provides a method for describing gas–solid reactions in complex boundaries at mesoscopic level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow

This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...

متن کامل

Lattice Gas Automata Simulation of Adsorption Process of Polymer in Porous Media

Lattice gas automata (LGA) model is developed to simulate polymer adsorption process by adding some collision rules. The simulation result of the model is matched with batch experiment and compared with accepted isothermal adsorption equations. They show that the model is viable to perform simulation of the polymer adsorption process. The LGA model is then applied for simulating continuous poly...

متن کامل

Heat Transfer Characteristics of Porous Radiant Burners Using Discrete-Ordinate Method (S2-Approximation)

This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners. A one dimensional model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. Combustion in the porous medium is modeled as a spatially dependent heat generation zone. The homogeneous porous media, in addition to its...

متن کامل

GDL construction effects on distribution of reactants and electrical current density in PEMFC

In this article, a two dimensional pore scale model of polymeric fuel cell, which is promising of a clean and renewable energy production, is presented here. Let reactive gases behave as an ideal gas; inhomogeneous anisotropic structure of the gas diffusion layer, is contemplated as a random generated circular porous media. Lattice Boltzmann method is applied to inquire the fluid flow and mass ...

متن کامل

Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model

A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016